当前位置: > 社会百科 > 空间向量基本定理证明(空间向量基本定理)

空间向量基本定理证明(空间向量基本定理)

大家好,我是小综,我来为大家解答以上问题。空间向量基本定理证明,空间向量基本定理很多人还不知道,现在让我们一起来看看吧!

1、该问题对空间向量的基本定理的表述不够准确,建议修改如下: 已知空间任意一点O和不共线的三点A.B.C,则点P位于平面ABC内的充要条件是:存在x.y.z∈R,满足x+y+z=1 使OP=xOA+yOB+zOC。

2、 证明:(充分性) ∵x+y+z=1 ∴ z=1-x-y 又∵OP=xOA+yOB+zOC ∴ OP =xOA+yOB+(1-x-y)OC OP=x(OA-OC)+y(OB-OC)+OC OP-OC=x(OA-OC)+y(OB-OC) ∴ CP=xCA+yCB 又由已知条件A、B、C三点不共线可得CA、CB是不共线向量 ∴ 根据平面向量的基本定理可知,点P位于平面ABC内 ∴ 充分性成立 (必要性) ∵点P位于平面ABC内 又由已知条件A、B、C三点不共线可得CA、CB是不共线向量 ∴ 根据平面向量的基本定理可知,存在实数x,y使得 CP=xCA+yCB ∴ OP-OC=x(OA-OC)+y(OB-OC) OP=x(OA-OC)+y(OB-OC)+OC OP =xOA+yOB+(1-x-y)OC 令z=1-x-y 则x+y+z=1 且 OP=xOA+yOB+zOC 即,存在实数x、y、z满足x+y+z=1,使得OP=xOA+yOB+zOC ∴ 必要性成立。

本文到此讲解完毕了,希望对大家有帮助。

免责声明: 本文来源网友投稿及网络整合仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。投诉邮箱:1765130767@qq.com。
本文地址: